Cuantificación de patógenos en embutido fermentado con cultivo iniciador
Palabras clave:
cultivo iniciador, patógenos, chorizo, modelos de inactivación no térmicaResumen
Para evaluar la capacidad del cultivo iniciador Lactobacillus acidophilus LA16 de inhibir el crecimiento de Escherichia coli spp. y Staphylococcus aureus en un embutido fermentado, se inocularon los patógenos en sistema cárnico modelo y en embutido tipo chorizo. Se cuantificó cada patógeno y se evaluaron cuatro modelos de inactivación para obtener el de mejor ajuste. Para validarlo, se prepararon diferentes variantes de chorizo con y sin cultivo iniciador. Los patógenos se inocularon a concentración inicial de 103 UFC/g y el cultivo iniciador a 104 UFC/g. La reducción de 2,5 log UFC/g observada en los patógenos ocurrió entre los tres y seis días para las variantes con L. acidophilus adicionado y entre los siete y ocho días para las variantes sin cultivo iniciador. Para el chorizo, este comportamiento fue descrito por el modelo bifásico que podría ser empleado para cuantificar E. coli y S. aureus.
Palabras clave: cultivo iniciador, patógenos, chorizo, modelos de inactivación no térmica.
ABSTRACT
Pathogens quantification in sausage with starter culture
To evaluate the ability of Lactobacillus acidophilus LA16 as starter to inhibit the growth of Escherichia coli and Staphylococcus aureus in a fermented sausage, the pathogens were inoculated in the model meat system and in chorizo. Each pathogen was quantified and four inactivation models were evaluated to obtain the best fit. To validate the model, different variants of chorizo were prepared with or without starter. Pathogens were inoculated at concentration of 103 UFC/g CFU/g and the starter culture at 104 UFC/g CFU/g. The reduction of 2.5 log CFU/g observed in the pathogens occurred between three and six days for the variants with L. acidophilus and between seven and eight days for the variants without starter. This behavior was described by the biphasic model and it could be used to quantify Escherichia coli and S. aureus in chorizo.
Keywords: starter, pathogens, fermented sausage chorizo type, modeling non- thermal inactivation.
Referencias
Wang S, Weller D, Falardeau J, Strawn LK, Mardones FO, Adell AD, Switt Moreno, AI. Food safety trends: From globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends Food Sci Technol 2016;57:188-98.
La Storia A, Villani F, Giello M, De Filippis F, Ercolini D. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol 2017;72:1-15.
Ge Q, Pei H, Liu R, Chen L, Gao X, Gu Y, Hou Q, Yin Yo, Yu H, Wu M, Zhang W, Zhou, G. Effects of Lactobacillus plantarum NJAU-01 from Jinhua ham on the quality of dry-cured fermented sausage. LWT 2019;101:513-8.
Meira NVB, Holley RA, Bordin K, Macedo REF d., Luciano FB. Combination of essential oil compounds and phenolic acids against Escherichia coli O157:H7 in vitro and in dry-fermented sausage production. Int J Food Microbiol 2017;260:59-64.
Gonzales-Barron U, Cadavez V, Pereira AP, Gomes A, Araujo JP, Saavedra MJ, Estevinho L, Butler F, Pires P, Dias T. Relating physicochemical and microbiological safety indicators during processing of linguiça, a Portuguese traditional dry-fermented sausage. Food Res Int 2015;78:50-61.
Mataragas M, Bellio A, Rovetto F, Astegiano S, Decastelli L, Cocolin L. Risk-based control of food-borne pathogens Listeria monocytogenes and Salmonella enterica in the Italian fermented sausages Cacciatore and Felino. Meat Sci 2015;103:39-45.
Mataragas M, Bellio A, Rovetto F, Astegiano S, Greci C, Hertel C, Decastelli L, Cocolin L.Quantification of persistence of the food-borne pathogens Listeria monocytogenes and Salmonella enterica during manufacture of Italian fermented sausages. Food Control 2015;47:552-9.
Rubio B, Possas A, Rincón F, García-Gímeno RM, Martínez B. Model for Listeria monocytogenes inactivation by high hydrostatic pressure processing in Spanish chorizo sausage. Food Microbiol 2018;69:18-24.
Christieans S, Picgirard L, Parafita E, Lebert A, Gregori T. Impact of reducing nitrate/nitrite levels on the behavior of Salmonella Typhimurium and Listeria monocytogenes in French dry fermented sausages. Meat Sci 2018;137:160-7.
NC-ISO 585. Contaminantes microbiológicos en alimentos. Requisitos sanitarios. Cuba, 2013.
Rubio R, Martín B, Aymerich T, Garriga M. The potential probiotic Lactobacillus rhamnosus CTC1679 survives the passage through the gastrointestinal tract and its use as starter culture results in safe nutritionally enhanced fermented sausages. Int J Food Microbiol 2014;186:55-60.
Rodríguez-Sánchez S, Ramos IM, Seseña S, Poveda JM, Palop ML. Potential of Lactobacillus strains for health-promotion and flavouring of fermented dairy foods. LWT 2021;143: 111102.
Pragalaki T, Bloukas JG, Kotzekidou P. Inhibition of Listeria monocytogenes and Escherichia coli O157: H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Sci 2013;95(3):458-64.
Dalzini E, Cosciani-Cunico E, Bernini V, Bertasi B, Losio M-N, Daminelli P, Varisco G. Behaviour of Escherichia coli O157 (VTEC), Salmonella typhimurium and Listeria monocytogenes during the manufacture, ripening and shelf life of low fat salami. Food Control 2015;47:306-11.
Holck AL, Axelsson L, Rode TM, Høy M, Måge I, Alvseike O, L'Abée-Lund TM, Omer MK, Granum P, Heir E. Reduction of verotoxigenic Escherichia coli in production of fermented sausages. Meat Sci 2011;89(3):286–95.
Correia JC, Bover-Cid S, Bolivar-Araceli, Zurera G, Pérez-Rodríguez F. Modelling the interaction of the sakacin-producing Lactobacillus sakei CTC494 and Listeria monocytogenes in filleted gilthead sea bream (Sparus aurata) under modified atmosphere packaging at isothermal and non-isothermal conditions. Int J Food Microbiol 2019;297:72-84.
Mataragas M, Drosinos EH, Vaidanis A, Metaxopoulos I. Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. J Food Sci. 2006;71(6): M157-M167.
Pérez-Rodríguez F, Valero A. Predictive Microbiology in Foods. Hartel RW, editor. London: Springer New York Dordrecht Heidelberg London; 2013. 129 p.
Beldarrain T, Moya Y, Piloto S, Cepero Y, Bruselas A, Santos R, Guerra MA, Frómeta Z, Rodríguez F. Empleo de Lactobacillus acidophilus como cultivo bioprotector. Parte II. Cienc Tecnol Aliment 2010;20(1):17-21.
Pla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods. Biomed Res Int 2015;2015.
Geeraerd AH, Valdramidis VP, Van Impe JF. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol. 2005;102(1):95-105.
Gänzle MG. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci. 2015;2:106–17.
Kalia VC. Quorum sensing inhibitors: An overview. Biotechnol Adv 2013;31(2):224-45.
Seleshe S, Kang SN. Effect of different Pediococcus pentosaceus and Lactobacillus plantarum strains on quality characteristics of dry fermented sausage after completion of ripening period. Food Sci Anim Resorces 2021:1-32.
Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J Biosci Bioeng 2015;119(1):10-8.
Du S, Cheng H, Ma JK, Li Z jun, Wang C hua, Wang YL. Effect of starter culture on microbiological, physiochemical and nutrition quality of Xiangxi sausage. J Food Sci Technol 2019;56(2):811-23.