Temperaturas de secado para la microencapsulación de saborizantes frutales mediante secado por aspersión

Autores/as

  • Yojhansel Aragüez Instituto de Investigaciones para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba.
  • Jorge A. Pino Instituto de Investigación para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba. Dpto. de Alimentos, Instituto de Farmacia y Alimentos, La Habana, Cuba.
  • Madai Bringas-Lantigua Instituto de Investigaciones para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba.
  • Ariel Ortega Instituto de Investigaciones para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba.
  • Idalmis Expósito Instituto de Investigaciones para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba.

Palabras clave:

microencapsulación, secado por aspersión, temperaturas de secado, saborizantes frutales

Resumen

El objetivo del trabajo fue recomendar las temperaturas de secado para la microencapsulación de saborizantes frutales secados por aspersión para su aplicación comercial. Se utilizó un modelo de diseño factorial de tres niveles y dos factores. Los soportes utilizados fueron (goma arábiga:maltodextrina 1:2 m/m). Esta mezcla quedó constituida por 80 % de los soportes y 20 % de saborizante (todos expresados en base seca) que representa, en base seca, el 35 % en sólidos. Los intervalos evaluados fueron de 150 a 220 °C para la temperatura de entrada y de 70 a 100 °C para la temperatura de salida del aire. Con el fin de obtener saborizantes frutales microencapsulados con alta calidad se recomiendan las temperaturas de entrada y salida del aire siguientes: mandarina (200; 80), limón (220; 85), naranja (180; 80), fresa (190; 85), piña (190; 85), melón (200; 80), guayaba (200; 80), coco (190; 90), guanábana (200; 80), mango (180; 80), papaya (200; 80) y mamey (200; 80).

Palabras clave: microencapsulación, secado por aspersión, temperaturas de secado, saborizantes frutales.

ABSTRACT

Drying temperatures for the microencapsulation of fruit flavorings by spray drying

The aim of the work was to recommend drying temperatures for the microencapsulation of spray-dried fruit flavors for their commercial application. A three-level with two-factor factorial design model was used. The supports used were (Arabic gum:maltodextrin 1:2 m/m). This mixture was made up of 80% of the supports and 20% of flavoring (all expressed on a dry basis) which represents, on a dry basis, 35% in solids. The evaluated ranges were 150 to 220 °C for the inlet temperature and 70 to 100 °C for the air outlet temperature. In order to obtain high quality microencapsulated fruit flavorings, the following air inlet and outlet temperatures are recommended: mandarin (200; 80), lemon (220; 85), orange (180; 80), strawberry (190; 85) , pineapple (190; 85), melon (200; 80), guava (200; 80), coconut (190; 90), soursop (200; 80), mango (180; 80), papaya (200; 80) and mamey (200; 80).

Keywords: microencapsulation, spray drying, drying temperatures, fruit flavorings.

Biografía del autor/a

  • Yojhansel Aragüez, Instituto de Investigaciones para la Industria Alimenticia. Carretera al Guatao km 3½, La Habana, C.P. 17 100, Cuba.

    Licenciado en Ciencias Alimentarias (IFAL, 2013) Master en Ciencias Alimentarias (IFAL, 2016). Investigador agregado. Sus principales líneas de trabajo han sido análisis de compuestos volátiles, microencapsulación de saborizantes, secado por aspersión de jugos de frutas y obtención de productos naturales.

Referencias

Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 2003; 68, 2256-62.

Expósito I, Pino JA. Secado de aromas de alimentos por aspersión. Cienc Tecnol Aliment 2010; 20(1):67-72.

Sharma D.K, Tiwari B.D. Microencapsulation using spray drying Indian Food Ind 2001; 20(2):48-51.

Yoshii H, Soottitantawat A, Liu X, Atarashi D, Furuta T, Aishima M, Linko P. Flavor release from spray-dried maltodextrin/gum arabic or soy matrices as a function of storage relative humidity Innov Food Sci Emerg. Technol 2001; 2:55-61.

Favaro C, Santana A, Monterrey E, Trindade M, Netto F. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids 2010; 24(4):336-40.

Jafari S.M, Assadpoor E He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol 2008; 26:816-35.

Shiga H, Yoshii H, Ohe H, Yasuda M, Furuta T, Kuwahara H, Ohkawara M, Linko P. Biosci Biotechnol Biochem 2004; 68(1):68-71.

Reineccius GA. The spray drying of food flavors. Drying Technol 2004; 22:1289-1324.

Reineccius GA. Flavor Chemistry and Technology. CRC Press. Taylor & Francis Group, Boca Raton, FL; 2006.

Singh-Vishwakarma G, Gautam N, Nagendra-Babu J, Mittal S, Jaitak V. Polymeric encapsulates of essential oils and their constituents: a review of preparation techniques, characterization, and sustainable release mechanisms. Polym Rev 2016; 56(4):668-701.

Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L. Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Comp Rev Food Sci Food Safety 2016; 15:143-82.

Ortega A, Roncal E, Roger E, Montelongo I. Desarrollo de un sabor en polvo de melón. Cienc Tecnol Alim 2007; 17(1):31-9.

Bringas M, Expósito I, Reyes M.I, Pino JA. Optimización de las temperaturas de entrada y salida del aire en el secado por aspersión para producir aceite esencial de mandarina microencapsulado. Cienc Tecnol Aliment 2010; 20(2):37-42.

Bringas, M, Expósito I, Reineccius G, López O, Pino JA. Influence of spray–dryer air temperatures on encapsulated mandarin oil. Drying Technol 2011; 29(5):520-6.

Bringas M, Valdés D, Pino JA. Influence of spray–dryer air temperatures on encapsulated lime essential oil. Int J Food Sci Technol 2012; 47:1511-7.

Ortega A, Rondón M, Roncal E, Bringas M, Expósito I, Valdez D, Camacho M. Desarrollo de un saborizante de fresa microencapsulado. Cienc Tecnol Aliment 2012; 22(1):59-65.

Bringas, M, Expósito I, Pino JA. Influencia de las temperaturas de secado en la obtención de un saborizante microencapsulado de fresa. Cienc Tecnol Aliment 2013; 23(1):49-54.

Aragüez Y, Bringas M, Pino JA, Roncal E. Desarrollo de un saborizante de coco microencapsulado mediante secado por aspersión. Cienc Tecnol Aliment 2013; 23(3):21-6.

Bringas M, Valdés D, Pino JA, Aragüez Y. Efecto de las temperaturas de secado en la obtención de un saborizante microencapsulado de piña. Cienc Tecnol Aliment 2014; 24(1):1-6.

Pino J, Bringas M, Aragüez Y, Roncal E. Efecto de la temperatura del aire de entrada durante el secado por aspersión en la retención de compuestos volátiles en saborizantes de melón de agua y guayaba. Cienc Tecnol Aliment 2016; 26(2):49-52.

Espinosa J. Evaluación Sensorial de los Alimentos. Editorial Universitaria, La Habana. 2007.

Buffo RA, Probst K, Zehentbauer G, Luo Z, Reineccius GA. Effects of agglomeration on the properties of spray‐dried encapsulated flavours. Flavour Fragr J 2002; 17:292-9.

Publicado

2022-01-04

Número

Sección

Artículos Originales

Cómo citar

Temperaturas de secado para la microencapsulación de saborizantes frutales mediante secado por aspersión. (2022). Ciencia Y Tecnología De Alimentos, 32(1), 1-6. https://revcitecal.iiia.edu.cu/revista/index.php/RCTA/article/view/350

Artículos similares

31-40 de 593

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 > >>